Regional Climate Model Evaluation System

based on satellite and other observations for application to CMIP/AR downscaling

Peter Lean¹, Jinwon Kim^{1,3}, Duane Waliser^{1,3}, Chris Mattmann¹, Cameron Goodale¹, Andrew Hart¹, Paul Zimdars¹, Alex Hall^{2,3}, Daniel Crichton¹,

Motivation

- IPCC AR5 has a new emphasis on decadal predictions:
 - downscaling provides regional details needed for near-term decision support
- Model evaluation is crucial to understand strengths and weaknesses of individual models.
- JPL/UCLA are collaborating to develop a observation-based regional model evaluation framework for quantifying biases in regional climate model simulations.
- Aim: Create a scalable database and processing system to allow researchers to quickly and efficiently confront model output with observations.

A new regional climate model evaluation framework

Goal:

- Make the evaluation process for regional climate models simpler and quicker
 - things that used to take weeks should take days.
- Allow researchers to spend more time analysing results and less time coding and worrying about file formats, data transfers.

Benefits:

- Improved understanding of model strengths/weaknesses allows model developers to improve the models
- Improved understanding of uncertainties in predictions of specific variables over specific regions for end-users

System Overview

RCMES (Regional Climate Model Evaluation System) High level technical architecture

Regional Climate Model Evaluation System overview

User friendly:

- No need for users to download large datasets
- No need for users to "re-invent the wheel" coding standard metrics

Flexible:

- Designed to be relatively easy to add new datasets to the database (extractors written for common formats: netCDF, GRIB, comma-separated ASCII)
- Front-end written in Python to take advantage of wide range of existing modules and Fortran bindings.

• Expandable:

- Database expands over time as researchers add new datasets for their own evaluation studies
- Apache Hadoop and MySQL used to provide scalable storage solution.
- Statistical processing library expands over time as researchers add new metrics

Datasets included so far:

Datasets that have been included so far:

TRMM (satellite precipitation): [1998 – 2010]

AIRS (satellite atmospheric surface + profile retrievals) [2002 – 2010]
 T(2m), T(p), z(p)

ERA-Interim (reanalysis): [1989 – 2010]

T(2m), Td(2m), T(p), z(p)

NCEP Unified Rain gauge Database (gridded precipitation):

[1948 - 2010]

Snow Water Equivalent (Noah Molotch): [2000-2009]

Statistical Metrics included:

Bias, RMS error, Anomaly Correlation, Pattern Correlation

User experience:

User experience:

Example output

e.g. Comparison of WRF seasonal precipitation with TRMM & URD

WRF model

Biases

TRMM observations

URD gridded rain gauge

e.g. Using model data on rotated grid and observations with missing data

2000

1000

-1000

-2000

-3000

-4000

-5000

-6000

-7000 -8000

-9000

-10⁴

30°N

20°N

140°W

130°W

120°W

110°W

40°N

35°N

30°N

25°N

20°N

140°W

130°W

120°W

110°W

14000

13000

12000

11000

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

90

80

70 60

50

40

30

20

10

0

-10

-20

-30

-40

-50

-60

-70

0

105°W

e.g. Metric calculations over masked regions + time series

URD resolution = 0.25° x 0.25° WRF resolution = 0.12° x 0.12°

Future directions

CORDEX collaboration

Co-Ordinated Regional climate Downscaling Experiment (CORDEX)

• Framework to co-ordinate regional modeling activities associated with CMIP5.

- Multiple models on standard pre-defined grids.
- Vast quantity of model data that requires evaluation.
- JPL collaborating with CORDEX project to utilize RCMES in evaluation studies.

Conclusions

- JPL/UCLA has designed and developed a new model evaluation framework which can be built upon in the future.
- The system has demonstrated the ability to quickly produce comparisons of models against several different observation datasets.
- A collaboration has been setup with the CORDEX project to utilize the system to evaluate downscaled CMIP5 projections from multiple models.

