A Regional Climate Model Evaluation System based on Satellite and other Observations for Application to CMIP and Climate Assessment Downscaling

D. E. Waliser¹, P. Lean¹, J. Kim², C. Goodale¹, A. Hart¹, C. Mattmann^{1,3} and P. Zimdars¹

¹Jet Propulsion Laboratory, California Institute of Technology; ² JIFRESSE, UCLA; ³University of Southern California

For more information, please email duane.waliser@jpl.nasa.gov

Background: Why model evaluation?

- Climate model projections play a crucial role in developing plans to mitigate and adapt to climate variations and change for sustainable developments.
- Assessing model performance is an important step in linking climate simulation quality to projection uncertainty and then to climate change impacts assessments.
- Uncertainties propagate according to model hierarchy
- Bias correction is based on model evaluation
- Determination of the weights in multi-model ensemble
- Model evaluation is also a fundamental part of model development and improvement (Figure 1).

Figure 1. The role of model evaluation in the model development process and uncertainty estimations.

Regional Climate Model Evaluation System (RCMES):

- •Provide a fast, flexible, comprehensive system to allow easy comparison of climate models with observations.
- •Enable researchers to handle a large volume of data and reduce time taken for model evaluation studies from weeks to hours.
- •Help model developers with cutting-edge observations and diagnostics to evaluate and improve their models.
- •Help end-users understand the uncertainties in climate projections for the regions of interest.
- Efficient: Fast access to reference data and toolkit
- •User Friendly: Intuitive and transferrable GUI
- •Flexible: Cloud-based architecture
- •Expandable:
- Easy to add new data/analysis tool
- Scalable storage solution

National Aeronautics and Space Administration

Jet Propulsion Laboratory
California Institute of Technology

Copyright 2010. All rights reserved

RCMES overview:

•Large database (MySQL + Apache Hadoop):

- · Multiple reference datasets from:
- Satellite remote sensing
- TRMM (1998-2010)
- · AIRS (2002-2010)
- MODIS Cloudiness
- Analysis
- CPC precipitation, CRU precipitation, 2-m air temperatures
- CPC precip
 Assimilation
- SWR (SNODAS; JPL&U. Colorado)
- Reanalysis
- ERA-Interim (e.g. U(p), V(p), q(p), T(p), SLP)

Extractors

 Process data from various data formats into a common database schema.

· Library of statistical metrics:

 Python routines with plug-ins in other languages (Fortran, c, idl) to calculate and plot standard metrics of model performance. (e.g. Bias, RMS error, Anomaly Correlation, Probability Distribution Functions).

Sample Graphical User interface

Evaluation of the Simulated Cold Season Hydrology in California WRF; Oct 2008 - Mar 2009; NCEP Final Analysis forcing

Season-total Precipitation (mm): Multiple Reference Data

Evaluation of the CORDEX-Africa Multi-Model Ensemble Preliminary 20-year runs; 1989 –2008

Future works:

- 1. Add additional reference datasets (e.g., other reanalysis, satellite data, in-situ)
- 2. Examine remote sensing data for evaluating fine-scale (<10km) regional climate data.
- 3. Additional metrics calculations and visualizations
- 4. Improve GUI
- Use the system to evaluate regional/global climate models associated with National Climate Assessment (NCA), NARCCAP, CMIP5 and CORDEX (Africa and Asia).

Reference

Hart, A.F., C.E. Goodale, C.A. Mattmann, P. Zimdars, D. Crichton, P. Lean, J. Kim, and D.E. Waliser, 2011: A cloud-enabled regional climate evaluation system. SECLOUD'11, May 22, 2011, Waikiki, Honolulu, HI, USA.