

Evaluation of the multiple-model CORDEX-Africa hindcast experiment using the RCMES

J. Kim², D.E Waliser^{1,2}, Peter Lean¹, C. Mattmann^{1,3}, C. Goodale¹, A. Hart¹, P. Zimdars¹, B. Hewitson⁴, C. Lennard⁴, A. Favre⁴, C. Jones⁵, and G. Nikulin⁵ ¹Jet Propulsion Laboratory, California Institute of Technology; ²JIFRESSE, UCLA; ³University of Southern California, ⁴CSAG/ENGEO/University of Cape Town; ⁵SMHI/Rossby Centre

For more information, please email: jkim@atmos.ucla.edu

Background:

- Climate models play a crucial role in developing plans to mitigate and adapt to climate variations and change for sustainable developments.
- Model evaluation is an important step in linking climate simulation quality to projection uncertainty and then to climate change impact assessments.
- Uncertainties propagate according to model hierarchy
- · Bias correction is based on model evaluation
- Determination of the weights in multi-model ensemble

RCMES High-level technical architecture rary of codes for extracting data im RCMED and model and for

Regional Climate Model Evaluation System (RCMES):

- · Provide a fast, flexible, comprehensive system to allow easy comparison of climate models with observations.
- Enable researchers to handle a large volume of data and reduce time taken for model evaluation studies from weeks
- · Help model developers with cutting-edge observations and diagnostics to evaluate and improve their models.
- Help end-users understand the uncertainties in climate projections for the regions of interest.
- RCMES is:
- . Efficient: Fast access to reference data and toolkit
- *User Friendly*: Intuitive and transferrable GUI
- Flexible: Cloud-based architecture
- Expandable:
- · Easy to add new data/analysis tool
- · Scalable storage solution

National Aeronautics and Space Administration

Copyright 2010. All rights reserved

CORDEX-Africa multi-model hindcast

- · Collaboration between JPL, UCLA, UCT & Rossby Centre • Monthly data from 11 RCM 20-year hindcast.
- · Models with incomplete/missing data are excluded
- Evaluation period are limited by the REF data period.
- Evaluations are performed for:
- · Precipitation, T2, T2Min, T2Max, Cloudiness
- REF data:
- Precipitation: TRMM.v6 (1998-2010), CRU (1901-2006)
- T2, T2Min, T2Max: CRU (1901-2006)
- Cloudiness: MODIS (2001-2008; mod o6 in http:// mcst.gsfc.nasa.gov/)

Institution	Model Variable	PRECIP	TMEAN	T _{MIN}	T _{MAX}	Cloudiness
CNRM	ARPEGE51	X	X	X	x	X
DMI	HIRHIM					x
ICTP	RegCM3					
IES	CCLM	x	x	X	x	x
KNMI	RACM02.2b	X	x	X	x	x
MPI	REMO					
SMHI	RCA35	X	x	X	x	x
UCT	PRECIS	X	X	X	x	
UC	WRF311	X	x	X	x	
UM	MM5	X	X	X	x	
UQAM	CRCM5					
**	ENS	X	X		Y Y	

Table. Models and variables incorporated in this evaluation study

CORDEX-Africa domain

- 0.440-resoln analysis domain Model data are interpolated onto the analysis domain
- sub-regions:
- Western Mediterranean
- Western sub-Sahara
- Central sub-Sahara
- Upper Nile
- South-central sub-Sahara
- 6. Eastern RSA

Precipitation Climatology: Overland only, 1989-2006 [Limited by CRU]

- · Model biases vary widely
- · Need to use more intuitive visualization of model performance.

Precipitation spatial variation: Taylor diagram

Precip annual cycle in sub-regions: Portrait diagram

- · Most models generate spatial distribution reasonably spatial correlation coefficients between 0.8 and 0.9
- Model performance in simulating the annual cycle vary according to regions as well as models
- Model ensemble is consistently among the best in simulating precipitation climatology measured in terms of RMSE, bias, and pattern correlation.

2-m Air Temperature Climatology: Annual Cycle in sub-regions

- All models generate spatial patterns of the observed 2m air temperatures reasonably
- Model performance in simulating 2-m temperatures also vary according to regions.
- Performance of model ensemble is consistently among the best terms of RMSE, bias, and pattern correlation.

2-m Air Temperature Climatology: Overland only, 1989-2006 [Limited by CRU]

- Spatial patterns of the all three 2-m temperature fields agree closely with the CRU analysis
- Spatial pattern correlation is generally higher than precip.

Cloudiness (2001-2008)

- · All models also generate spatial patterns of the observed cloudiness reasonably
- Like for precipitation and 2-m air temperatures, performance of model ensemble is consistently among the best in terms of RMSE, bias, and pattern correlation.

Summary

- Multi-RCM preliminary CORDEX-Africa hindcast data are evaluated against available REF data using RCMES
- 2. Most RCMs simulate the observed characteristics in precipitation, 2-m air temperatures and cloudiness.
- Model performance varies according to regions
- 4. Intuitive presentation schema is useful for visualizing model performance.
- 5. The model ensemble consistently performs among the in terms of RMSE, bias, and pattern correlation
- 6. More rigorous evaluation of a larger set of model variables & variable-weight model ensemble will be performed & applied to obtain ensemble climate change signals for the CORDEX-Africa region.