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 K-means clustering is used to put NARR DJF probability distribution

l. Introduction functions (PDF)s into 4 “basis” categories.
Motivation: Changes in temperature extremes due to anthropogenic + K=4 clusters was found to be optimal in this case for defining clusters
climate change are expected to have severe negative impacts on that are easy to mterpret physically.
society. It is therefore crucial to quantify how extremes are manifested
and how well key mechanisms associated with these events are gﬁgiﬁ; Fig. 3. NARR DJF basis PDFs and +/- 1 standard dev.

simulated in current generation regional climate models (RCMs). + Clusters primarily reflect variance

Cluster 4
 Northward expansion of cluster 1 in RCMs

Project Goal: Evaluate the ability of a suite of RCM hindcast experiments =7 _ )
reflects positive variance bias there.

to simulate temperature extremes and their associated large-scale
meteorological patterns (LSMPs).
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Data: 6 NARCCAP hindcast experiments; NCEP North American
Regional Reanalysis (NARR) and NASA Modern Era-Retrospective
Analysis for Research and Applications (MERRA). All regridded to
(0.5°x0.5°) for 1980-2003. NARR and MERRA comparison is presented

to estimate observational uncertainty.
ll. PDF Evaluation
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NARRDJF 0 MERRADIF 2R’C|V| Ensemble DIF ) Fig. 4. Maps of pointwise cluster assignments. The color shading matches the
= e Q\\é N - \ PDF colors in Fig. 3. RCM cluster assignments match the basis PDF that has the
| | \ P smallest RMS difference from the RCM PDF.
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Fig 1. (Left) Standard deviation of daily surface temperature anomalles for NARR.
(Center) Ratio of MERRA standard deviation to NARR standard deviation. (Right)

Ratio of the 6-RCM ensemble standard deviation to NARR standard deviation.
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Q\‘é * . Fig 5. (Top) Composites of normalized temperature anomalies (units of standard
1 deviation) for the warmest 5% of JJA days at Los Angeles gridpoint (blue *). Black
’, wind vector is the composite surface wind and the yellow is climatology. (Bottom)
. ' «f( Composites of sea level pressure (shaded, in mb) and 500 hPa geopotential height
L1 d oo (contoured every 10 meters, dashed=neg, solid=pos) anomalies for the same days.
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Fig. 2. (Left) Skewness of NARR, (center) skewness of MERRA, (right) skewness of
the multi-RCM ensemble. Non-shaded grid cells are not significant at the 10% level.

« RCM ensemble generally has higher variance than NARR, obs.
uncertainty is low.

 DJF skewness has good agreement while JJA has strong
disagreement (and high obs. uncertainty), especially along Gulf of
MeXxico coast.

» Future projections of extremes should be interpreted with caution in * Chicago has long cold tail, and strong RCM-reanalysis agreement. Patterns and
much of the domain in JJA where skewness uncertainty is large. surface winds are similar.

IV. Conclusions

Fig 6. Same as Fig. 5 except for Chicago DJF cold days and with 20 m HSOO contours

* LA has long warm tail and complex topography, LSMPs show disagreement.

* Models often capture variance and skewness well in DJF with substantial disagreement and high observational uncertainty for JJA skewness.

» Large-scale meteorological patterns associated with extremes are simulated well in most cases especially away from sub-gridscale topographical
and coastal features, consistent with Loikith and Broccoli (2012).

» Results suggest the model ensemble mean is well-suited for simulating future temperature extremes with some notable exceptions in JJA.
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