NARCCAP Multi-RCM Evaluations using RCMES: Monthly surface air temperatures and precipitation over the conterminous U.S.

NARCCAP Users' Workshop 10-11 April 2012 Boulder, Colorado

J. Kim¹, D.E. Waliser², C. Mattmann², L. Mearns³, C. Goodale² A. Hart². Crichton², S. Mcginnis³

¹: Joint Institute for Regional Earth System Sci. and Eng./UCLA

²: Jet Propulsion Laboratory/NASA

³: National Center for Atmospheric Research

Background: Regional Climate Model Evaluation

- Recent studies have confirmed with high level of confidence that the emissions of anthropogenic greenhouse gases have induced the ongoing global warming trend.
- Assessment of the impacts of climate change on regional sectors have become an important concern.
- RCMs play a crucial role in climate change impact assessments.
- Systematic evaluations of GCMs have been undertaken for some time (e.g., AMIP, CMIP); this is not the case for RCMs.

JPL Regional Climate Model Evaluation System (RCMES) Facilitate Model Evaluation via User-friendly Data Infrastructure

- Observational data are a key component of climate research
 - Detection and attribution
 - Typical model evaluation is performed by comparing the model and reference data from observations, analysis of observed data and/or observation-based assimilations.
 - Easy access to quality reference data facilitates evaluation efforts.
 - Remote-sensing at NASA & other institutions can provide fine-scale reference data suitable for evaluating future RCM simulations.
- To facilitate RCM evaluation, especially for easy access to remote sensing data, RCMES has been developed via joint JPL-UCLA efforts.

RCMES Database (RCMED) Current & near-future archives

- RCMED Datasets (now or near-term)
 - MODIS Cloudiness: [2000-2010, daily]
 - TRMM PR: [1998-present, daily], 3B42 & version-7
 - AIRS T_{SFC} and profiles: [2002-2010, daily]
 - NCEP CPC PR analysis: [1948-present, daily, US]
 - CRU v3.0 & v3.1 (pr, T2, T2_{MAX}, T2_{MIN}, cloudiness): [monthly]
 - JPL SWE: [2000-2010], Sierra Nevada
 - CERES Radiation: [1983-2007, monthly], surface and TOA
 - NASA MERRA Reanalysis
 - ERA-Interim Reanalysis
 - NCEP Reanalysis
 - CloudSat, MISR/MODIS aerosol, SMAP SMC, etc.

Ongoing and planned application

Near-term applications to WCRP's CORDEX for IPCC

- N. America: Funded via NASA for U.S. NCA (NCAR, NARCCAP)
- Africa: Collaboration & analysis ongoing (UCT, Rossby Centre)
- Arctic: Exploring collaboration (J. Cassano, March 2012 Workshop)
- E. Asia: Exploring collaboration (KMA, APCC)
- S. Asia: Exploring collaboration

NARCCAP Multi-RCM Evaluation:

Monthly precipitation and surface air temperatures

- The JPL-UCLA team is collaborating with NCAR scientists for providing inputs to National Climate Assessment report.
- Monthly data from 5 RCMs for the 24-year (1980-2003) period are obtained on a common grid from NCAR.
- Evaluations are performed for the monthly-mean values of:
 - Precipitation and the daily-mean surface air temperature
- Reference data used:
 - CRU3.1 (1901-2010, 0.5deg)
- Currently WIP:
 - Surface pressure (vs. MERRA Reanalysis data)
 - Surface insolation (vs. CERES radiation data)

RCMs and the Analysis Domain

- The data from 5 RCMs and their ENS over the conterminous US region are evaluated.
- The RCM simulations are interpolated onto a common grid nest of 0.5-deg horizontal resolution for analysis, evaluation, and inter-comparison.
- Fourteen sub-regions (as shown in the figures and table) are selected to examine model performances in various regions of interests.

ID	Region	Long Range	Lat Range	i Range	j Range
01	PNw (Pacific NW - west)	236.25-239.75	42.75-49.25	73-80	56-69
02	PNe (Pacific NW - east)	240.25-247.25	42.75-49.25	81-95	56-69
03	CAn (northern California)	236.25-242.25	37.25-42.25	73-85	45-55
04	CAs (southern California)	237.25-245.25	32.25-37.25	75-92	35-45
05	SWw (SWUS - west)	246.25-251.75	31.25-37.25	94-104	33-45
06	SWe (SWUS - east)	251.75-260.25	31.25-37.25	104-121	33-45
07	COL (Colorado)	249.75-256.25	37.25-43.25	100-113	45-57
08	GPn (nor. Great Plains)	260.25-269.75	45.25-49.25	121-140	61-69
09	GPc (central Great Plains)	260.25-269.75	34.75-45.25	121-140	40-61
10	GC (Gulf Coast)	264.25-275.25	29.75-34.75	129-151	30-40
11	GL (Great Lakes)	270.25-279.75	38.25-44.75	141-160	47-60
12	NE (NE US)	280.25-289.75	38.25-44.75	161-180	47-60
13	SE (SE US)	276.25-284.75	30.75-38.25	153-170	32-47
14	FL (Florida)	276.75-279.75	24.25-30.75	154-160	19-32

Model ID	Model Name
M01	CRCM (Canadian Regional Climate Model)
M02	ECP2 (NCEP Regional Spectral Model)
M03	MM5I (MM5 – run by Iowa State Univ.)
M04	RCM3
M05	WRFG (WRF – run by PNNL)
ENS	Model Ensemble (Uniform weighting)

[1] The daily-mean surface air temperature evaluation 5 RCMs and their ensemble vs. CRU3.1 analysis

• 24 years: 1980-2003

Overland only

• Annual climatology: Spatial variability

• Seasonal climatology: Interannual variability

Annual cycle in subregions.

- Model errors varies systematically according to geography.
- All models show cold biases over the coastal and the eastern US regions.
- Most models show warm biases in the Great Plains region.
- Model errors in the mountainous WUS region vary widely; may be related with large orographic variations in the region.
 - RCMs may experience difficulties in simulating the surface air temperatures in the mountainous WUS with their 50-km horizontal resolutions.

Surface air temperature climatology: Spatial Variability over the land surface

- Evaluation of the spatial variability of the simulated surface air temperature climatology using the Taylor diagram
 - Spatial pattern correlations
 - Spatial variability
 - RMSE
- All models generate spatial patterns reasonably with pattern correlation coefficients of 0.95-0.99 with the CRU analysis.
- The simulated spatial variability is also close to the observations.
 - The standardized deviation ranges from 0.9 to slightly above 1.
 - All models except CRCM underestimate the spatial variability.
- The model ensemble (marked by a red circle) yields the smallest RMSE.

Seasonal surface air temperature climatology: Normalized bias & interannual variability

- Mean biases vary, quite systematically, according to geography and season
 - Warm biases in the Great Plains area for both summer and winter
 - Cold biases in the Pacific, Gulf, and Atlantic coast regions in summer
 - Warm biases in the Atlantic coast, Florida and northern California during winter.
- All models reasonably simulated the interannual variability of the winter temperatures in most regions.
- The interannual variability are generally overestimated for summer temperatures.
- The model ensemble is among the best performers for all seasons, regions, and metrics.

[2] Precipitation evaluation 5 RCMs and their ensemble vs. CRU3.1 analysis

• 24 years: 1980-2003

Overland only

• Annual climatology: Spatial variability

• Seasonal climatology: Interannual variability

Annual cycle in subregions.

• Model biases in simulating the annual precipitation climatology also varies according to regions.

Annual precipitation:

Climatology and Biases

- The most noticeable systematic biases are:
 - wet biases in the Pacific NW.
 - dry biases in the Gulf coast and southern Great Plains.
 - model biases are mixed in the AZ western NM region that is strongly affected by the North American Monsoon (NAM)

Annual precipitation climatology: Spatial Variability over the land surface

- All models show similar performance in simulating spatial patterns with spatial correlation coefficients of 0.75-0.85 with the CRU analysis.
- Model performance vary more widely in simulating the spatial variability.
 - Three out of five models as well as the model ensemble underestimates the spatial variability.
- The model ensemble (marked by a red circle) yields the smallest RMSE.

- Winter precipitation:
 - Most models overestimate the mean and interannual variability in the inland regions.
 - Most models underestimate the mean and interannual variability in GC.
 - Most models perform well for the Pacific & Atlantic coast regions.
- Summer precipitation:
 - Models generally underestimate the mean in the GP, SWUS, and FL.
 - Models generally overestimate the mean in the Atlantic coast and Colorado regions.
 - Large errors in the PNW and CA regions may not be of practical importance.
- Model errors show strong regional variations.
- Model errors in the seasonal mean and interannual variability are closely related:
 - overestimations (underestimations) of the mean is usually corresponds to overestimations (underestimations) of the interannual variability, especially for winter.

Summary

- Evaluation of climate models is a fundamental step in projecting future climate and assessing their impacts on important sectors.
- JPL/NASA is developing RCMES to facilitate RCM evaluation
 - A number of observed and remote sensing data are available for model evaluations
- Monthly-mean surface air temperatures and precipitation from multiple RCMs participating in the NARCCAP hindcast experiment have been evaluated.
- It has been found that model errors vary systematically according to regions, seasons, variables, and metrics in addition to models.
- Models generate warm and cold biases in the GP and the coastal regions, resp.
 - The warm biases in the GP region occur in both summer and winter.
 - In other regions, biases vary according to seasons.
- All RCMs generate wet and dry biases in the PNW and GP regions, resp.
 - All RCMs perform poorly in simulating the summer precipitation in the SWUS region.
- Overestimations of seasonal mean precipitation is usually accompanied by overestimations of interannual variability.
- The simple model ensemble is typically among the best performer in all evaluations.
- The model errors identified in this study can be related to multiple causes including:
 - The lack of horizontal resolution, model physics, errors in reanalysis data
- Need in-depth process studies to identify the causes of model errors.