Model Errors in Precipitation, Cloudiness, and Radiation in the NARCCAP Hindcast Experiment

J. Kim¹, D.E. Waliser^{1,2}, L.O. Mearns³, C.A. Mattmann^{1,2}, C.E. Goodale² A.F. Hart². D.J. Crichton², S. McGinnis³, and H. Lee²

1: Joint Institute for Regional Earth System Sci. and Eng./UCLA

²: Jet Propulsion Laboratory/NASA

³: National Center for Atmospheric Research

Introduction

- Precipitation and surface insolation are among the most crucial variables in shaping the energy and water cycle, especially in the surface climate.
- These variables directly affect agriculture, water resources, snowpack, and natural ecosystems that are key targets in a number of climate change impact assessment studies for practical applications.
- Thus, model errors in simulating precipitation and insolation are an important concern in climate simulations and their application to impact assessments.
- The relationship between the model errors in these variables may provide clues for the source of model errors and/or for improving climate model performance.

Experiment

- We examined the relationship between the model biases in precipitation, cloudiness, and surface insolation over the conterminous United States in the NARCCAP multi-RCM climate hindcast experiment.
- Cloudiness is selected to represent "cloud effects".
 - The cloud effects are determined by, in addition to cloudiness, the content, size distribution, and phase of cloud particles.
- Data from 4 RCMs and their ENS are used (Table).
- Reference datasets include the station-based CRU3.1 for precipitation and satellite-based Clouds and the Earth's Radiant Energy System (CERES) datasets for cloudiness and surface insolation.
 - The JPL Regional Climate Model Evaluation System (RCMES) is used to access and process the reference and model data in this study.

RCMES2.0

(http://rcmes.jpl.nasa.gov)

Raw Data:

Various sources, formats, Resolutions, Coverage

RCMED

(Regional Climate Model Evaluation Database)
A large scalable database to store data from variety
of sources in a common format

RCMET

(Regional Climate Model Evaluation Tool)
A library of codes for extracting data from RCMED and model and for calculating evaluation metrics

Precipitation, Surface Insolation, and Clouds

- Precipitation and surface insolation are related via clouds.
- Calculations of these three fields are among the most uncertain components in today's climate models.
- Working Hypothesis:
 - The biases in precipitation and cloudiness are positively correlated,
 - The surface insolation bias is negatively correlated with the biases in precipitation and cloudiness.

Biases in Annual-mean precipitation, Cloudiness, and Insolation

- Model biases show regionally systematic variations. E.g.,
 - Wet/Dry biases in the western US/Gulf of Mexico
 - Overall negative cloudiness biases in the US (Less –'ve or +'ve biases in WUS)
 - General +'ve biases in insolation except in the Pacific NW (Less -'ve or +'ve biases in EUS/Gulf of Mexico)
- RCM3 shows very different bias fields for cloudiness and insolation.
- The relationship between the three bias fields are not clear.

Biases in Annual-mean precipitation, Cloudiness, and Insolation Spatial Anomalies

- Spatial anomalies of model biases show noticeable patterns
 - Most RCMS show positive/negative precipitation bias anomalies in WUS/EUS, most notably in the Pacific NW/Gulf of Mexico-Atlantic coast regions.
 - Insolation bias anomalies matches with those in precipitation (opposite signs).
 - Cloudiness bias anomalies are similar to those in precipitation (same signs).

Relationship between the model errors in PR, Cloudiness, and Insolation: ENS

- The bias anomalies of multi-model ensemble shows consistent relationship between precipitation, insolation, and cloudiness for season totals as well as annual totals.
 - Positive correlation: PR vs. Cloudiness
 - Negative correlation: PR vs. Insolation & Cloudiness vs. Insolation
- The strongest correlation between cloudiness and surface insolation; the weakest for precipitation and cloudiness.

Biases in Precipitation, Cloudiness, and Insolation

	Model	PR (mm/day)	Cloudiness (%)	Insolation (W/m2)
All Year	CRCM	0.33	-11.0	10.1
	HRM3	-0.08	-5.6	10.6
	RCM3	-0.54	2.7	-28.7
	WRFG	-0.09	-12.4	30.6
	ENS	0.18	-6.6	5.6
Spring	CRCM	0.60	-12.8	10.7
	HRM3	0.22	-5.7	-43.5
	RCM3	0.96	5.5	-26.7
	WRFG	0.23	-12.9	35.6
	ENS	0.50	6.5	-6.0
Summer	CRCM	0.45	-11.7	29.9
	HRM3	-0.18	-7.9	31.0
	RCM3	0.62	-7.4	-28.1
	WRFG	-0.44	-16.9	49.6
	ENS	0.11	-11.0	20.6
Fall	CRCM	-0.04	-6.9	3.9
	HRM3	-0.51	-3.9	66.6
	RCM3	0.01	3.1	-32.9
	WRFG	-0.34	-11.9	23.5
Winter	ENS	-0.22	-5.1	15.2
	CRCM	0.32	-12.6	-3.8
	HRM3	0.16	-5.1	-11.6
	RCM3	0.57	8.8	-27.0
	WRFG	0.16	-8.0	14.3
	ENS	0.31	-4.3	-7.0

- The relationship between the spatial anomalies of model biases in PR, Cloudiness, and Insolation are consistent for nearly all models and seasons.
- The expected relationship between the biases in precipitation, cloudiness, and insolation does not exist for the land-mean biases.

Biases in Precipitation, Cloudiness, and Insolation

	Model	PR vs.	PR vs.	Cloudiness vs.
All Year		Cloudiness	Insolation	Insolation
	CRCM	0.24	-0.48	-0.46
	HRM3	0.29	-0.30	-0.51
	RCM3	0.47	-0.49	-0.64
	WRFG	0.36	-0.22	-0.60
	ENS	0.36	-0.48	-0.66
Spring	CRCM	0.30	-0.43	-0.45
	HRM3	0.36	-0.43	-0.49
	RCM3	0.59	-0.52	-0.75
	WRFG	0.39	-0.26	-0.75
Winter Fall Summer	ENS	0.39	-0.53	-0.59
	CRCM	0.42	-0.35	-0.58
	HRM3	0.00	-0.33	0.03
	RCM3	0.59	-0.07	-0.22
	WRFG	0.22	-0.14	-0.56
	ENS	0.38	-0.32	-0.34
	CRCM	-0.06	-0.34	-0.50
	HRM3	0.40	-0.36	-0.58
	RCM3	0.53	-0.61	-0.57
	WRFG	0.40	-0.40	-0.44
	ENS	0.36	-0.37	-0.79
	CRCM	0.08	-0.28	-0.72
	HRM3	0.27	-0.35	-0.75
	RCM3	0.37	-0.49	-0.82
	WRFG	0.38	-0.41	-0.79
	ENS	0.28	-0.41	-0.89

 The relationship between the spatial anomalies of model biases in PR, Cloudiness, and Insolation are consistent for nearly all models and seasons.

Summary

- Relationships between model biases in simulating precipitation, insolation, and cloudiness over the conterminous US region are examined from the NARCCAP hindcast experiment data.
- The relationship between the domain-average biases between these variables are not clearly defined (except in fall).
- The spatial anomalies of model biases (biases "domain-mean bias") show consistent relationships between precipitation-and-insolation (negative), cloudiness-andinsolation (negative), and precipitation-and-cloudiness (positive) for all seasons and (nearly) all models.
 - These relationships are expected.
 - This also suggests that the effects of clouds on surface insolation may be approximated in terms of cloudiness.
- These results may suggest that the RCMs examined in this study possess useful skill in simulating